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We report on the photoluminescen@l) properties ofin situ Tm-doped AlGa _,N films (0<x

=<1) grown by solid-source molecular-beam epitaxy. It was found that the blue PL properties of
Al,Ga _,N:Tm greatly change as a function of Al content. Under above-gap pumping, GaN:Tm
exhibited a weak blue emission at478 nm from thelG,—3Hg transition of Tni*. Upon
increasing Al content, an enhancement of the blue PL at 478 nm was observed. In addition, an
intense blue PL line appeared-a#65 nm, which is assigned to th®,— 3F, transition of Tni™.

The overall blue PL intensity reached a maximumxer0.62, with the 465 nm line dominating the
visible PL spectrum. Under below-gap pumping, AIN:Tm also exhibited intense blue PL at 465 and
478 nm, as well as several other PL lines ranging from the ultraviolet to near-infrared. THe Tm
PL from AIN:Tm was most likely excited through defect-related complexes in the AIN host.
© 2003 American Institute of Physic§DOI: 10.1063/1.1631742

Light emission from rare-earttRE)-doped III-N semi- total flux of Ga and Al was kept constant. The PL was ex-
conductors is of significant current interest for applicationscited using the UV outpuf250 nm, 10 ns pulses, 10 Hz
in electroluminescencéEL) devices'™ Previous work on repetition ratg of an optical parametric oscillat¢©PO) sys-
visible emission from RE-doped IlI-Ns was mainly focusedtem. For low-temperature PL measurements, the samples
on RE-doped GaN:3 PhotoluminescencéPL) and cathod- were mounted on the cold finger of a closed-cycle helium
oluminescencéCL) data have been reported from nearly all refrigerator. Visible PL spectra were recorded using a 0.5 m
lanthanide ions doped into GaN? Visible EL devices based monochromator equipped with a photomultiplier tube for
on RE-doped GaN, however, have only been demonstrateifjht detection. The signal was processed using a boxcar av-
from GaN:Eu (red,"*>® GaN:Er (green,” and GaN:Tm erager, and PL lifetime transients were recorded using a digi-
(blue).2 One of the main challenges in using RE-doped GaNizing oscilloscope.
for full-color display applications is obtaining efficient blue Figure 1 shows an overview of the normalized PL spec-
emission. While dominant blue emission has been reportegta of Tm-doped AlGa,_,N with x=0, 0.16, 0.21, 0.39,
from GaN:Tm EL device&? the overall device efficiency 0.62, and 0.81. The calculated bandgap energies using Veg-
was significantly lower than results obtained for GaN:Euard’s law and a bowing parameter bf=1 are 3.39 eV
(red and GaN:Ex(green.” For RE-doped AIN, red emission (GaN), 3.71, 3.82, 4.26, 4.91, and 5.56 eV, respectively.
has also been reported from Eu, and green emission from EThe PL was excited using the 250 rm4.96 e\j output of
and Tb-doped amorphous and crystalline fififis? Re-  an OPO system, which corresponds to above-gap pumping
cently, blue CL was reported from Tm-impanted AfNand ~ for Al Ga,_,N samples withx<0.62. Similar to previous
efficient blue EL was demonstrated froim situ Tm-doped  reports®® the visible PL from GaN:Tm is characterized by a
AlGaN films** broad band extending from400 to 600 nm and near-band-

In this letter, we report on the PL properties of edge emission at-367 nm. A weak blue PL line located at
Al Ga_xN:Tm films under above- and below-gap pumping. ~478 nm from the'G,— 3Hg transition of Tni* is hardly
Tm-doped AlGa, N films with x=0 (GaN), 0.16, 0.29, gpservable. The infrared PL at803 nm is tentatively as-
0.39, 0.62, 0.81, and (AIN) were grown by solid-source sjgned to the intra-# transition 3H,— 3Hg of Tm®* ions?®
molecular-beam epitaxy op-type Si(111) substrates. El- Changing from GaN:Tm to AGa_,N:Tm led to pro-
emental Al, Ga, and RE sources were used in conjuncnounced changes in the PL properties. Upon increasing Al
tion with a rf-plasma source supplying atomic nitrogen.content, the 478 nm PL line gained in intensity and was
The Tm cell temperature was fixed at 600 °C, leading to &learly observed. The broadband emission was also sharply
Tm concentration between-0.2 and ~0.5 at.%. The yeduced. The strongest emission from #@— 3Hg transi-
AlGa ,N:Tm films were grown fo 1 h at 550°C and @ tjon at 478 nm was obtained for=0.39. Interestingly, two
growth rate of~0.5 um/h. Adjusting the Al cell temperature other L lines were observed: a weaker line-&70 nm and
during growth controlled the Al content in the films. The 5 gominant blue line at-465 nm. The PL intensity of the
465 nm line was several times larger compared to the 478
dElectronic mail: uwe.hommerich@hamptonu.edu nm PL. The overall strongest blue PL intensity was measured
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FIG. 2. High-resolution PL spectrum of AIN:Tm at room temperature. The
PL was excited at 250 nm, which correspond to below-gap pumping. The
— assignment of the intraf4transitions of TM* is indicated in the figure. The
300 400 500 600 700 800 inset shows the infrared PL spectrum around 1450 nm.

Wavelength (nm
gth (nm) ing an efficient carrier-mediated excitation process in

FIG. 1. Room-temperature PL spectra of@k _N:Tm excited at 250 nm. ~ GaN:Th. Assuming that TAT also induces a defect-level in
The dofted "Qﬁs i”dilcfte the po(;siltlign °§Fthe b':e PL a”:_iag frolm Ithe ;ra”'GaN, similar arguments for the weak above-gap excitation
Eg'r?ggsafgergfe;@ a?engsf?ndm;t; ir‘]‘t(he f%‘c’ur';'f)' e caledlated  officiency can be applied to GaN:Tm Within the defect-
related energy transfer model, however, the excitation effi-
ciency of the TM* can be optimized by a modification of
from Alg 6/Gay 3g\N:Tm with the 465 nm line being roughly the bandgap energy. Upon increasing Al content, higher ex-
ten times more intense than the 478 nm line. cited states of Ti" (1D, /115/3P;) move within the bandgap
The observation of new PL lines in Aba _,N:Tm can  of Al,Ga _,N, which provide additional channels for the
be explained by the change in bandgap energy of the hosénergy transfer between defect levels and® Trions. Future
Tm3* has higher excited states above #@, level, which  investigations are necessary to identify Tm-related defects in
are located at-3.4 eV (D,) and ~4.2 eV (15/°Py).**Y"  Al,Ga_,N:Tm to support the defect-related energy transfer
The energy of théD, level is very similar to the bandgap model. In addition, it cannot be excluded that chemical ef-
energy of GaNsee Fig. 3. Therefore, no emission from the fects related to the presence of Al change the* Trimcorpo-
D, level is observed from GaN:Tm. Upon increasing theration and excitation mechanisms, similar to observations
bandgap energy of AGa _,N, the D, level moves within made for Er-doped AIGaA%E
the bandgap of the host, which results in the observation of The high-resolution PL spectrum, with excitation at 250
PL lines at 370 and 465 nm. Based on the comparison tam, of AIN:Tm at room temperature is shown in Fig. 2. The
existing literaturé®"the 370 and 465 nm lines are assignedPL was dominated by intense blue PL lines centered485
to the'D,—3Hg and'D,— 3F, transitions of Tm™. and~478 nm. The average lifetimes of the 465 and 478 nm
Figure 1 also indicates that the excitation efficiency oflines were determined to be2 and~33 us, respectively.
the G, level of Tnt" is enhanced in AGa_,N:Tm  The lifetimes were nearly temperature independent, suggest-
samples compared to GaN:Tm. As mentioned earlier, hardling that nonradiative decay processes are small. The different
any blue Tmi* PL was observed in GaN:Tm. A similar poor
above-gap pumping efficiency was reported fof Tlons in
GaN:Th!® The weak PL excitation efficiency was explained
using a defect-related energy transfer model as proposed b
Takaheiet al. for RE-doped semiconductot8In this model, ~ GaN  _ 35
RE doping of a semiconductor leads to the formation of RE- Eg~34eV 59
related levels in the bandgap of the host. These levels cai 25
trap free carriers, which subsequently recombine and transfe
their energy to intra-## RE transitions. Recent studies have
identified RE-related traps for GaN:E¥%?° GaN:Tb® and
GaN:Ef! at ~0.3-0.4 eV below the conduction band of
GaN. The recombination energy of carriers trapped at the
RE-related defects in GaN is then estimated to-t80-3.1 00
eV, which energet!callyematches mtrd—dansmons_of Ed" FIG. 3. Free-ion energy level diagram of Tiions and observed transi-
and EF", respectively® On the other hand, T8 ions do  {ions in AIN:Tm. The bandgap of GaN is also indicated in the figure, along

not exhibit intra-4 transitions in that energy range, prevent- with PL lifetimes for several excited states of T
Downloaded 30 Dec 2004 to 129.137.203.180. Redistribution subject to AIP license or copyright, see http://apl.aip.org/apl/copyright.jsp
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FIG. 4. Below-gap pumping of AIN:Tm using different excitation wave-
lengths in the UV region. The blue PL from Pmcan be excited of a wide
range of wavelengths from320 down to 220 nnglower wavelength limit
of OPO laser system

Hommerich et al.

the D, (~465 nm and'G, (~478 nm levels varied as a
function of excitation wavelength. This result suggests the
existence of different TH centers, which are selectively
excited through different defects.

In summary, the PL properties of &a, _,N:Tm were
investigated. Under above-gap pumping, GaN:Tm exhibited
only a weak blue emission from th&,— 3Hg transition of
Tm3*. Asignificant enhancement of the blue Tiemission
was observed from Tm-doped 8a, ,N samples. Besides
emission from thé G,— 3Hg transition, a second blue emis-
sion line appeared around 465 nm, which was assigned to the
'D,—3F, transition of Tni". The overall strongest blue PL
emission was measured from, &a; _,N:Tm with x=0.62.
Strong blue emission from théD, and 'G, levels of
Tm** was also observed from AIN:Tm under below-gap
excitation. The large sensitivity of the blue emission from
Tm®* on the Al content of AlGa _,N indicates the possi-
bility to optimize the RE excitation and emission properties
through careful bandgap engineering of the host.

The authors from H. U. acknowledge financial support
by ARO through grant DAAD19-02-1-0316. The work at
U. C. was supported by ARO grant DAAD 19-99-1-0348.
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